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Abstract— Metric learning has been widely used in many
visual analysis applications, which learns new distance metrics
to measure the similarities of samples effectively. Conventional
metric learning methods learn a single linear Mahalanobis
metric, yet such linear projections are not powerful enough
to capture the nonlinear relationships. Recently, deep metric
learning approaches, such as discriminative deep metric learning
and deep transfer metric learning, have been introduced to
fully exploit the nonlinearity of samples by learning hierarchical
nonlinear transformations. However, these methods only learn
holistic metrics over the input space and are limited for the
heterogeneous data sets, where data varies locally. In this paper,
we propose a deep localized metric learning approach for visual
recognition by learning multiple fine-grained deep localized
metrics. We first learn K local subspaces and one holistic
subspace with the K-auto-encoders-based clustering. Then, given
an input pair, we compute its localized distance on each learned
subspace and obtain the final distance representation. Finally,
we train the entire neural networks to ensure the distances of
positive pairs smaller than negative pairs by a large margin.
Experimental results on three visual recognition applications,
including face recognition, person re-identification, and scene
recognition, show that our DLML outperforms most existing
metric learning approaches.

Index Terms— Deep metric learning, local metric learning,
K-auto-encoders, visual recognition.

I. INTRODUCTION

V ISUAL recognition has attracted much attention
in computer vision, which is widely applicable in

numerous applications, such as face recognition [1]–[3],
person re-identification [4]–[6], image classification [7]–[9]
and many others. As a representative pattern recognition task,
there are two main classes of approaches to improve the
recognition performance: 1) extracting more discriminative
descriptors, and 2) designing more effective distance metrics.
The first aims to separate different objects in the feature
level, and the second is to obtain a new fine-grained distance
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metric for better similarity measurement of descriptors.
In this paper, we mainly focus on the second category.

Generally, the similarity measurements are task-specific
because different datasets usually subject to varying
distributions. Unlike hand-crafted distance metrics which
perform the same function on all the tasks ignoring the
differences in data distribution, metric learning approaches
which aim to learn distance metrics from the dataset are
more data-adaptive and obtain better performance. A variety
of metric learning methods have been proposed in recent
years [3], [10]–[17], where most approaches learn a single
linear Mahalanobis metric through the labeled training dataset
or the positive and negative input pairs, such as large margin
nearest neighbor (LMNN) [15], information-theoretic metric
learning (ITML) [14] and logistic discriminant metric learn-
ing (LDML) [10]. However, a single Mahalanobis metric only
learns linear transformation, which is not powerful enough to
capture the nonlinear correlations of the samples. Kernel tricks
are usually employed to address the limitation by first mapping
the dataset into the high-dimensional space and then learning
the metrics on the transformed space [5], [18]–[20]. However,
these approaches usually suffer from scalability problem as
they fail to obtain the explicit nonlinear projections.

More recently, several deep metric learning approaches have
been proposed by learning hierarchical nonlinear projections,
which present outstanding performance such as discriminative
deep metric learning (DDML) [3], deep transfer metric learn-
ing (DTML) [17], deep coupled metric learning (DCML) [21]
and multi-manifold deep metric learning (MMDML) [22].
However, these methods only learn holistic metrics for mea-
suring the similarities over the input space, which may not be
able to handle the data varying locally. Inspired by the fact
that localized metric learning exploits the local specificities
and deep learning presents outstanding nonlinear capability,
we propose a deep localized metric learning (DLML) method
by learning multiple deep localized metrics, so that the learned
metrics are more fine-grained for local subspaces. We consider
an example in face recognition for a clearer illustration of the
advantages. Some faces are more easily classified for another
mistakenly. For example, we tend to misrecognize an Asian
female for another Asian female, rather than an European
male. Learning holistic metrics may lead to a high misclassi-
fication rate under these situations as they suffer from small
inter-class distances, while localized metric learning empha-
sizes the confusing “Asian females” and “European males”
local subspaces, and is therefore reasonable to improve the
classification performance. Fig. 1 illustrates the pipeline of
the proposed approach. We first train one holistic subspace
to minimize the reconstruction error of all input samples, and
train K local spaces with the K-Auto-Encoders (KAEs) based
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Fig. 1. The flowchart of the proposed DLML approach for visual recognition.
We first train the Auto-Encoders to obtain K local subspaces and one holistic
subspace with all the training samples in an unsupervised manner. Then,
we connect a fully connection network to each Auto-Encoder to learn a
hierarchical nonlinear metric for each subspace. Given a pair of input samples
xi and x j , we calculate its localized distances dk(xi , x j ) using the outputs
of the entire networks, and fuse the K + 1 distances into the final distance
metric D(xi , x j ). The weight functions of the localized metrics are determined
by the reconstruction errors of the Auto-Encoders. Lastly, the parameters of
the entire networks are trained to ensure the distances of positive pairs smaller
than negative pairs by a large margin.

clustering. Then, we connect a fully connection network to
each Auto-Encoder to obtain multiple deep localized metrics
in the learned subspaces. The outputs of the deep neural
networks are utilized to calculate localized pairwise distances,
and the reconstruction errors of the Auto-Encoders determine
the weight functions. Lastly, we train the entire deep neural
networks to ensure the final distances of positive pairs smaller
than those of negative pairs by a large margin. Extensive
experimental results on three different visual recognition tasks
including face recognition, person re-identification and scene
recognition show that the proposed DLML approach outper-
forms most existing metric learning methods.

We organized the rest of the paper as follows: Section II
briefly review two related topics. Section III details the
proposed DLML approach. Section IV introduces the
experimental results on three different visual recognition
applications, and Section V concludes the paper.

II. RELATED WORK

In this section, we briefly review two related topics: metric
learning and visual recognition.

A. Metric Learning

The purpose of metric learning is to learn new distance
metrics in order to reduce the distances between positive pairs
and increase the distances between negative pairs. Most exist-
ing metric learning methods learn a single linear Mahalanobis
metric for similarity measurement [10], [14], [15], [23], [24].
For example, Davis et al. [14] proposed an information-
theoretic metric learning (ITML) method by leveraging
Mahalanobis distances and multivariate Gaussian distribution
in an information-theoretic setting. Guillaumin et al. [10]
presented a logistic discriminant metric learning (LDML)
approach to learn distance metric with logistic discriminant
from labeled face pairs. Koestinger et al. [23] proposed
a KISS metric embedding (KISSME) method to learn a
distance metric with equivalence constraints, following the
KISS (keep it simple and straightforward) principle. However,
a single linear transformation cannot capture the nonlinear
relationships between sample pairs, which are quite common
in the real-world applications. To address this, kernel tricks are
usually applied for nonlinear transformations [5], [18], [19],
yet they cannot obtain the explicit functions and face
scalability problem. More recently, several deep metric
learning methods have been proposed to address the limitation
by learning hierarchical nonlinear transformations [3], [17].
For example, Hu et al. [3] proposed a discriminative deep
metric learning (DDML) method by learning a distance metric
with a deep neural network. They also presented a deep
transfer metric learning (DTML) [17] approach by transfering
information from the source domain to the target domain
for cross-domain recognition. However, these deep metric
learning approaches only learn holistic distance metrics over
the input space, which are too restrictive for heterogeneous
datasets especially when samples vary locally.

B. Visual Recognition

There are mainly two categories of approaches for visual
recognition: feature representation and metric learning.
Feature representation aims to extract discriminative features
to separate different objects in the feature level, which
should be robust to illuminations, rotations, viewpoints
and occlusions [1], [2], [7]–[9], [25]–[32]. For example,
Ahonen et al. [25] proposed a local binary pattern (LBP)
based face representation. Ma et al. [27] proposed a domain
transfer ranked support vector machines (DTRSVM) method
by relaxing the constraint to the mean of positive pairs and
constructing a discriminative model. Zhao et al. [28] studied
properties for good filters and patch clusters, and learned
mid-level filters from the collected local patches. Lu et al. [30]
presented a compact binary face descriptor (CBFD) method by
learning evenly-distributed and energy-saving binary descrip-
tors in an unsupervised manner. More recently, a number
of convolutional neural networks (CNNs) based approaches
have been proposed, which obtain the state-of-the-art.
Representative CNN features include AlexNet [7], DeepID [1],
VGG [2], [8], FaceNet [32], GoogLeNet [33] and ResNet [9].
There have also been numerous metric learning methods
proposed in the last decade to address the visual recognition
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problem [3]–[5], [10], [11], [14], [15], [23], [29], [34]–[38].
For example, Cai et al. [34] presented a deep nonlinear metric
learning with independent subspace analysis (DNLML-ISA)
method by using an ISA network. Cui et al. [11] proposed
a pairwise-constrained multiple metric learning (PMML)
approach to fuse face region descriptors. Weinberger et al. [15]
presented a large margin nearest neighbor (LMNN) approach
to learn a distance metric k-nearest neighbor classification.
Nguyen et al. [35] proposed a cosine similarity metric
learning (CSML) approach to learn a transformation
for cosine similarity measurement. Pedagadi et al. [37]
learned distance metric for pedestrian re-identification
by utilizing unsupervised PCA and supervised local
Fisher (LF) discriminant analysis for dimension reduction.
Paisitkriangkrai et al. [38] proposed a structured learning
based approach by exploiting multiple visual features through
metric ensembles.

III. PROPOSED APPROACH

In this section, we first propose the K-Auto-Encoders based
clustering, and then present the localized pairwise distance
and the deep localized metric learning. Lastly, we introduce
the implementation details of the proposed method.

A. K-Auto-Encoders Based Clustering

There have been numerous metric learning approaches
proposed recently, yet there are three key limitations of the
existing metric learning approaches:

1) Most existing metric learning approaches simply learn a
single linear transformation using the Mahalanobis met-
ric. However, subjects usually lie in a nonlinear manifold
in real-world visual applications, where a linear metric
may not be able to fully capture the relationship between
the input pairs.

2) Kernel tricks are usually employed to learn a nonlinear
discriminative mapping in an implicit high-dimensional
feature space, yet kernel-based approaches usually suffer
from scalability problems.

3) Deep metric learning methods learn hierarchical nonlin-
ear projections which present outstanding capability of
capturing the nonlinearity of samples. However, exist-
ing deep metric learning methods such as DDML [3]
and DTML [17] only learn holistic metrics, which is
restrictive for heterogeneous datasets varying locally.

Inspired by the fact that localized metric learning
approaches learn a set of local metrics by dividing metric
learning from a clustering process and present outstanding per-
formance, we propose a K-Auto-Encoders (KAEs) based deep
localized metric learning method with deep neural networks
to address the limitations above. Localized metric learning
enables unrestricted multiple mappings, and deep learning
provides powerful hierarchical nonlinear projections. More
specifically, we employ K networks for local metric learning
which are labeled by 1 to K in Fig. 1, and one network for
holistic metric learning labeled by 0. For the local networks,
we utilize KAEs to perform a K-clustering process, which
is the key step for local metric learning. For the holistic

network, we simply learn the Auto-Encoder to minimize the
reconstruction loss.

We train the Auto-Encoders with all the images in an
unsupervised manner. We especially explain the details of
training local KAEs. K-means is one of the most effective
unsupervised clustering methods, which optimizes in an
iterative two-step procedure: 1) quantizing each sample point
into a clustering center, and 2) updating each cluster with the
related samples. Referencing K-means, we train our KAEs
iteratively with the similar two steps. First, we cluster each
sample xn into the specific Auto-Encoder which minimizes
its reconstruction loss εnk = ||�xnk||2. Then, we update the
parameters of each Auto-Encoder using the corresponding
samples to minimize their reconstruction loss. Fig. 2 explains
the detailed procedures of training KAEs.

The Auto-Encoders learn K + 1 subspaces through the
training samples, where K of them are local subspaces trained
by parts of the set and the other is the holistic subspace.
The parameters of the Auto-Encoders will be further trained
with the entire networks for better localized metrics. There are
three main advantages of the proposed KAEs based clustering.
First, it effectively learns K local subspaces which compre-
hensively captures the latent manifold of the training sam-
ples from multiple angles. Second, the relationship between
samples and each local subspace can be directly described
by the reconstruction error of the Auto-Encoder. Third, com-
pared with other unsupervised clustering approaches such as
K-means whose parameters are fixed in the metric learning
procedure, the proposed KAEs based method constructs entire
deep networks in localized metric learning, where the parame-
ters of the Auto-Encoders are further trained by the objective
function of metric learning to obtain better subspaces.

B. Localized Pairwise Distance

Let X = [x1, x2, · · · , xN ] be the N samples from the
training set, where xn ∈ R

d (1 ≤ n ≤ N) is the nth training
sample. We first train the local KAEs using the iterative two-
step procedure as well as the holistic Auto-Encoder with
all the input samples in an unsupervised manner. Then, we
connect each Auto-Encoder with a fully connection network
to construct K + 1 deep neural networks in total, where K
networks are for the local metrics and one network learns
the holistic metric. All the networks share the same structure
but different in parameters. We denote each entire network
(including the Auto-Encoder and the fully connection layers)
has M + 1 layers and h(m)

k represents the mth layer of the kth
network, where k = 0, 1, · · · , K and m = 0, 1, · · · , M . In
the kth network, h(0)

k represents the input samples. Suppose
W(m)

k and b(m)
k are the projection matrix and the bias vector

between the (m − 1)th layer and the mth layer of the kth
network, respectively, so that the mth layer can be computed
as:

h(m)
k = φ(W(m)

k h(m−1)
k + b(m)

k ), (1)

where φ represents the nonlinear activation function, such as
tanh, sigmoid and ReLU.
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Fig. 2. The detailed explanation of training KAEs. The training procedure is divided into two steps: 1) clustering each input sample into one of the KAEs
with the minimum reconstruction loss, and 2) training the parameters of the associate Auto-Encoder with the corresponding samples. We iteratively execute
the two steps until convergence.

For each pair of input samples xi and x j , we can obtain K
local representations and one holistic representation for each
of them. We denote fk(xi) as the representation of xi in the
kth network and fk(x j ) as the representation of x j , where fk

is the output of the kth network h(M)
k . Therefore, there are

K + 1 distances under different metrics in total:

dk(xi , x j ) = || fk(xi ) − fk(x j )||2, (2)

where d0(xi , x j ) is calculated with the global metric and the
others are with the local metrics.

In order to integrate the K + 1 distances into the final
distance, we define a weight function μk for each metric
according to the reconstruction error of the Auto-Encoder as
follows:

μk(xi , x j ) = s(εik , ε j k)
∑K

l=0 s(εil , ε j l)
, (3)

where

s(εik , ε j k) = exp(−εik + ε j k

2σ 2 ). (4)

The reconstruction error can be considered as the energy of
the samples on each subspace, where better projections lead
to smaller energies and should deliver greater significance. As
each input sample has different energy distribution on local
and holistic subspaces, the weight functions are designed to
enlarge the influence of the metrics with small reconstruction
error in a smooth manner, and to lower the significance of
the metrics with large reconstruction error. We regularize the
weights μk(xi , x j ) to scale its L1-norm to 1.

With the weight functions, the final distance can be com-
puted as follows:

D(xi , x j ) =
K∑

k=0

μk(xi , x j )dk(xi , x j ). (5)

The set of K determines the comprehensiveness of exploit-
ing local subspaces. Larger K leads to a better description of

the input manifold, yet it may suffer from severer overfitting
and higher computational costs. The proposed localized metric
learning method degenerate into conventional deep metric
learning if we set K = 0.

C. Deep Localized Metric Learning

Having obtained the pairwise distance through the neural
networks, we hope to define an objective function for training
the parameters, where positive pairs have smaller distances
than negative pairs by a relatively large margin. We assume
that the distance margin is 2δ where δ is a positive number.
Given a preset parameter l, the distances between positive pairs
should be less than l − δ while larger than l + δ for negative
pairs. Fig. 3 shows an intuitive illustration of the proposed
localized metric learning method. We formulate the following
constraint to realize the above motivations:

δ − yi j (l − D(xi , x j )) < 0, (6)

where yi j represents the label information, equaling to 1 for
positive pairs and −1 for negative pairs. The formulation (6)
can be rewritten as D(xi , x j ) < l − δ for positive pairs
and D(xi , x j ) > l + δ for negative pairs, which clearly
demonstrates the physical meaning of the proposed method.

Inspired by the above motivations, we formulate the follow-
ing objective function to learn deep localized metrics:

min
W(m)

k ,b(m)
k

J = J1 + λJ2

=
∑

i, j

f (δ − yi j (l − D(xi , x j )))

+ λ

K∑

k=0

M∑

m=1

(||W(m)
k ||2F + ||b(m)

k ||22), (7)

where

f (x) = 1

η
log(1 + exp(ηx)) (8)
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Fig. 3. An intuitive illustration of the proposed localized metric learning method. Given a positive input pair and a negative input pair, we can obtain their
distances in the original space. Because of the large intra-class variations caused by poses, illuminations and expressions, the distance of the positive pair
may even larger than the negative pair. We first train K local Auto-Encoders and one holistic Auto-Encoder for subspace clustering, and then correspondingly
learn K local metrics and one holistic metric to ensure the learned final distance of the positive pair less than l − δ, while larger than l + δ for the distance
of the negative pair.

is the generalized logistic approximation of the function
max(x, 0).

The physical meaning of J1 is to ensure a margin of 2δ
between the distances of positive pairs and negative pairs.
J2 aims to regularize the parameters of the K + 1 neural
networks. λ is to balance the two terms.

We apply the batch gradient scheme to update the parame-
ters of the networks with the objective function, and we can
calculate the derivatives of W(m)

k and b(m)
k as follows:

∂ J

∂W(m)
k

=
∑

i, j

(�
(m)
k,i j (h

(m−1)
k,i )T + �

(m)
k, j i (h

(m−1)
k, j )T ) + λW(m)

k

(9)
∂ J

∂b(m)
k

=
∑

i, j

(�
(m)
k,i j + �

(m)
k, j i ) + λb(m)

k (10)

where h(m)
k,i and h(m)

k, j represent the mth layer of the kth neural
network under the inputs of xi and x j , respectively. As the
learning rates of the Auto-Encoders are set relatively small,
we ignore the derivatives of the weights μk .

For the last layer h(M)
k of the kth network, we calculate the

updating functions �
(m)
k,i j and �

(m)
k, j i as follows:

�
(M)
k,i j = μk(xi , x j ) f ′(c)(h(M)

k,i − h(M)
k, j ) ◦ φ′(z(M)

k,i )

�
(M)
k, j i = μk(xi , x j ) f ′(c)(h(M)

k, j − h(M)
k,i ) ◦ φ′(z(M)

k, j ),

and for other layers, the updating functions are formulated as
follows:

�
(m)
k,i j = (W(m+1)

k )T �
(m+1)
k,i j ◦ φ′(z(m)

k,i )

�
(m)
k, j i = (W(m+1)

k )T �
(m+1)
k, j i ◦ φ′(z(m)

k, j ), (11)

where ◦ represents the element-wise multiplication and c, z(M)
k,i

and z(m)
k, j are defined as follows:

c � δ − yi j (l − D(xi , x j ))

z(m)
k,i � W(m)

k h(m−1)
k,i + b(m)

k

z(m)
k, j � W(m)

k h(m−1)
k, j + b(m)

k . (12)

With the derivatives above, we use the gradient descent
algorithm with back-propagation to update the parameters of
the neural networks:

W(m)
k = W(m)

k − ν
∂ J

∂W(m)
k

(13)

b(m)
k = b(m)

k − ν
∂ J

∂b(m)
k

, (14)

where ν represents the learning rate of the networks.
Algorithm 1 details the approach of our DLML.

D. Implementation Details

In this subsection, we present the implementation details of
training Auto-Encoders and the fully connection networks in
the proposed method.

1) Auto-Encoders: In the proposed method, we train one
holistic Auto-Encoder and K local Auto-Encoders for local-
ized metric learning. We apply the sigmoid as the activation
function. For the holistic Auto-Encoder, we directly learn the
parameters with all the training samples to minimize their
reconstruction losses. For the local KAEs, as it is easy to
cluster all the samples into one of the KAEs if we directly
employ random initialization, we design a more fine-grained
initialization approach. More specifically, we first learn the
parameters by training with all input samples on each of
KAEs under different random initialization. This procedure
obtains K similar but different holistic subspaces, which are
then applied to the iterative two-step learning approach. The
learned parameters of KAEs are utilized as the initialization
of the metric learning procedure.

2) Fully Connection Networks: In our experiments, we
simply apply a normalized random initialization for the fully
connection part of the networks, where b(m)

k is set as 0 and
W(m)

k is set under the uniform distribution:

X ∼ U [−
√

6
√

p(m)
k + p(m−1)

k

,

√
6

√

p(m)
k + p(m−1)

k

], (15)
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Algorithm 1 DLML
Input: Training set X, number of local subspaces K , number

of fully connection networks layers M , parameters λ and
ν, distance threshold l, margin δ, convergence error ε and
iteration number T .

Output: Parameters of the neural networks W(m)
k and b(m)

k .
1: Initialize the parameters W(m)

k and b(m)
k .

2: Train the holistic Auto-Encoder to minimize the reconstruc-
tion error.

3: Iteratively learn KAEs with the two-step procedure.
4: for i ter = 1, 2, · · · , T do
5: Randomly select a sample pair xi and x j with the label

yi j .
6: for m = 1, 2, · · · , M do
7: Obtain h(m)

k,i and h(m)
k, j with forward-propagation.

8: end for
9: for m = M, M − 1, · · · , 1 do

10: Update W(m)
k using (13) with back-propagation.

11: Update b(m)
k using (14) with back-propagation.

12: end for
13: Calculate Jt using (7).
14: if t > 1 and |Jt − Jt−1| < ε then
15: break.
16: end if
17: end for
18: end return W(m)

k and b(m)
k .

where p(m)
k represents the dimension of the mth layer in the

kth network.

IV. EXPERIMENTS

We evaluated the proposed DLML method on three different
visual analysis tasks including face recognition, person re-
identification and scene recognition. The followings describe
the experimental details and results.

A. Face Recognition

In this subsection, we conducted experiments on two widely
used face recognition datasets including labeled faces in the
wild (LFW) [39] and YouTube Face (YTF) [40].

The LFW dataset [39] contains 5749 subjects with total
13233 face images, which were captured from the web in wild
conditions, varying from ages, poses, resolutions, illuminations
and many others. Fig. 4 shows some example faces from the
LFW dataset. The supervised learning procedure on the LFW
dataset can be divided into image restricted setting and image
unrestricted setting. We applied the former setting by only
utilizing the pairwise labels. We conducted our experiments
on the “View 2” dataset, following the standard evaluation
protocol [39], including 6000 image pairs with half of them
matched and the others mismatched. They were divided into
10 folds with 300 matched pairs and 300 mismatched pairs in
each fold. We aligned each facial image with a conventional
2D affine transformation and then cropped into 80 × 150 to
remove the background.

Fig. 4. Face samples of the LFW dataset. Each column represents the same
person.

Fig. 5. Face samples of the YTF dataset. Each column represents the same
person.

The YTF dataset [40] consists of 3415 videos of 1595 dif-
ferent subjects collected from the YouTube website, and each
video clip has 181.3 frames on average. The videos are varying
from poses, illuminations and expressions. Fig. 5 shows some
example faces from the YTF dataset. We also followed the
standard image restricted face verification protocol, which con-
tained 10 folds of 5000 video pairs in total. In each fold, half
of the video pairs are positive and the other half are negative.

1) Feature Representation: Before applying the proposed
DLML approach, we first extracted features for facial images
of the LFW and YTF datasets following [3].

For the LFW dataset, we extracted three types of
features including local binary patterns (LBP) [25], dense
SIFT (DSIFT) [41] and sparse SIFT (SSIFT) [10]. We
summarize the details of these features as follows:

1) LBP: We divided each facial image into several non-
overlapping 10 × 10 regions. As the image size is
80 × 150, there are 120 (=8 × 15) regions in total for
each face. We extracted a uniform 59-dimensional LBP
feature for each region, which were concatenated into a
7080-dimensional vector.

2) DSIFT: We extracted a 128-dimensional SIFT descriptor
densely on each non-overlapping 16 × 16 region, and
obtained 45 (=5 × 9) descriptors for each face. They
were concatenated into a 5760-dimensional vector.

3) SSIFT: We computed the SSIFT descriptors on
nine facial landmarks under three scales for each
facial image, and they were concatenated into a
3456-dimensional vector.

Moreover, we followed [3] by using the square root of
each feature to evaluate the combined features. We applied
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the whitened PCA (WPCA) approach to reduce the feature
dimension to 500 for redundancy reduction [42]. The near-
est neighbor classifier with cosine similarity is applied for
classification.

For the YTF dataset, we directly applied the provided
baseline descriptors from the dataset [40], which included
LBP [25], Four-Patch LBP (FPLBP) [43] and Center-
Symmetric LBP (CSLBP) [44]. We simply averaged the
features in the same video clip to construct the final represen-
tation as faces were pre-aligned and cropped through facial
landmarks. Moreover, we also utilized WPCA to reduce the
dimension of each feature to 500.

In our experiments, we fixed the structure of the Auto-
Encoders as [500→400→300→400→500], following by a
two-layer fully connection to construct the entire networks,
whose dimension is set as [500→400→300]. We fixed the K
to 4 for LFW and YTF. The distance threshold l, the margin δ
and parameter λ are fixed as 3, 1 and 10−2 respectively for
all the experiments by experience.

2) Comparison With Existing Methods: We compared our
DLML with existing methods under the image-restricted
setting of the LFW and YTF datasets.1 The compared methods
consist of metric learning methods and descriptor based
methods. Typical metric learning methods include cosine
similarity metric learning (CSML) [35], pairwise-constrained
multiple metric learning (PMML) [11], discriminative deep
metric learning (DDML) [3], deep nonlinear metric learning
with independent subspace analysis (DNLML-ISA) [34],
large margin multi-metric learning (LM3L) [45] and deep
transfer metric learning with Auto-Encoder regularization
(DTML-AE) [17]. Descriptor based methods mainly include
convolutional deep belief network (CDBN) [46], Fisher
vector [47], pose adaptive filter (PAF) [48], compact binary
face descriptors (CBFD) [30] and adaptive probabilistic
elastic matching (APEM) [49].

Table I tabulates the recognition accuracy and the standard
error, and Fig. 6 shows the ROC curves of the proposed
DLML compared with the state-of-the-art approaches under
the image restricted setting of the LFW dataset. Similarly,
Table II and Fig. 7 show the accuracy and the ROC curves
on the YTF dataset. We see that our DLML outperforms
the existing state-of-the-art metric learning approaches such
as PMML, DNLML-ISA, DDML, LM3L and DTML-AE.
Unlike the shallow metric learning methods that simply learn a
Mahalanobis metric or apply kernel tricks for nonlinear trans-
formation, our DLML learns deep nonlinear projections which
present stronger discriminative power. Compared with deep
metric learning approaches including DNLML-ISA, DDML
and DTML-AE, our DLML learns multiple deep localized
metrics to capture the local specificities, where the metrics
for local regions are described more precisely. Moreover,
the combined descriptor shows better discriminativeness and
obtains better verification accuracy on both LFW and YTF.

1It is noted that deep learning methods have achieved outstanding results on
LFW and YTF with the image-unrestricted setting, where there are mainly two
key differences: 1) outside data is not allowed for training under the image-
restricted setting, and 2) only weak pairwise label information is exploited
instead of the strong supervision.

TABLE I

COMPARISON OF MEAN VERIFICATION ACCURACY AND THE
STANDARD ERROR (%) UNDER THE IMAGE-RESTRICTED

SETTING OF THE LFW DATASET

Fig. 6. Comparison of ROC curves under the image-restricted setting of the
LFW dataset.

3) Comparison of Different Clustering Methods: Besides
the proposed KAEs, other clustering algorithms can also be
used in the proposed framework. We compared the proposed
KAEs to the commonly used K-Means approach on the
LFW dataset by first clustering features using K-Means and
then learning the deep localized metrics. Table III shows
that KAEs achieves better result than K-Means. The main
reason is that KAEs performs quantization by learning K
subspace projections rather than K centroids, which presents
stronger descriptive power and robustness. How to develop
more elaborate quantization methods to combine with our
proposed framework to further improve the performance is
an interesting future work.

4) Comparison of Different Weights: Generally, μk(xi , x j )
aims to define the weight of the kth local subspace for
the input pair xi and x j , where the subspaces with smaller
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TABLE II

COMPARISON OF MEAN VERIFICATION ACCURACY AND THE
STANDARD ERROR (%) UNDER THE IMAGE-RESTRICTED

SETTING OF THE YTF DATASET

TABLE III

MEAN VERIFICATION ACCURACY (%) COMPARISON OF DIFFERENT

CLUSTERING METHODS UNDER THE IMAGE-RESTRICTED

SETTING OF THE LFW DATASET

Fig. 7. Comparison of ROC curves under the image-restricted setting of the
YTF dataset.

reconstruction loss would have higher weights. We apply the
formulation in 4 for smoothness, where other formulations are
also applicable. We tested another straightforward formulation
by setting s(εik , ε j k) = 1

εik+ε jk
, and the experimental results

on LFW and YTF are shown in Table IV. We observe that
there is only a slight drop in accuracy.

5) Computational Time: Our hardware configuration com-
prises of a 2.8 G-Hz CPU and a 32G RAM, and we have
not applied GPU for acceleration. We tested the training time
on the LFW dataset with K = 4, and it took 861.9s to train
the entire networks, where the average training time for each
network was 172.4s. We also evaluated the computational time
for testing, and it took 0.2 second on the LFW dataset. For

TABLE IV

MEAN VERIFICATION ACCURACY (%) COMPARISON
OF DIFFERENT μ ON LFW AND YTF

Fig. 8. Examples of the VIPeR dataset. Each column represents the same
person captured from two different viewpoints.

the widely used deep metric learning method of DDML [3],
the training and test time are 33.8 and 0.1 seconds on LFW,
respectively.

B. Person Re-Identification

Person re-identification is a conventional visual analysis
task, where images of person captured from multiple non-
overlapping cameras need to be recognized. The image pairs
usually suffer from large variation of poses, illuminations,
viewpoints and occlusions, which leads large intra-class
differences.

We conducted the experiments of DLML on the VIPeR
dataset [54]. It contains 632 subjects under two different
viewpoints, which are cropped to 128 × 48 to remove the
background information. The dataset has a large viewpoint
variation and relatively low resolution, which makes it a chal-
lenging dataset in person re-identification. Fig. 8 shows some
examples of the VIPeR dataset. As person re-identification suf-
fers from more variations compared with the face recognition
tasks, we fixed the number of subspaces as 5 by experience.

We followed two widely used evaluation protocols [54] to
test the proposed DLML. In the first protocol, 632 pairs of
images are randomly divided into 316 pairs for training and
the remaining 316 pairs for testing. In the second protocol,
only 100 images pairs are used as the training set and the other
532 pairs are used as the test set. We tested the matching rates
under different ranks to evaluate the proposed method.

1) Feature Representation: We utilized the local maximal
occurrence (LOMO) feature to describe each image. LOMO
is a commonly used pedestrian descriptor which extracts
the HSV and scale invariant local ternary pattern (SILBP)
features for a high-level description. LOMO exploits the
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TABLE V

COMPARISON OF MATCHING RATES (%) UNDER DIFFERENT RANKS WITH
METRIC LEARNING APPROACHES ON THE VIPeR DATASET (P = 316)

TABLE VI

COMPARISON OF MATCHING RATES (%) UNDER DIFFERENT RANKS WITH
METRIC LEARNING APPROACHES ON THE VIPeR DATASET (P = 100)

horizontal occurrence information and presents robustness to
view point changes by applying the Retinex transformation
and scale invariant local descriptors, which fits for the person
re-identification tasks. Moreover, we reduced the dimension of
the feature to 500 using WPCA, and reflected each training
image horizontally for data augmentation. We applied the same
network structure as the face recognition task.

2) Comparison With Metric Learning Methods: We com-
pared the proposed DLML with existing metric learn-
ing methods, which included PCCA [55], regularized
PCCA (rPCCA) [5], KISSME [23], large margin nearest
neighbor classifier (LMNN) [15], Information theoretic met-
ric learning (ITML) [14], kernel local Fisher discriminant
analysis (kLFDA) [5] and cross-view quadratic discriminant
analysis (XQDA) [29].

Table V and Table VI shows the experimental results of
our DLML and the state-of-the-art metric learning methods
on the VIPeR dataset. XQDA [29] achieves an outstanding
performance on both settings of the VIPeR dataset, yet it only
learns a single quadratic metric which may not be powerful
enough to describe the complicated nonlinear relationship.
The proposed DLML method learns multiple deep localized
metrics which presents stronger discriminative power and
obtains better performance on both P = 316 and P = 100
settings of the VIPeR dataset.

3) Comparison With Person Re-Identification Methods: We
also compared the proposed DLML approach with commonly
used person re-identification methods on the VIPeR dataset.
Table VII and Table VIII show the experimental results
under P = 316 and P = 100 settings respectively. We
observe that our LDML achieves outstanding matching rates

TABLE VII

COMPARISON OF MATCHING RATES (%) UNDER DIFFERENT RANKS
WITH PERSON RE-IDENTIFICATION APPROACHES ON THE

VIPeR DATASET (P = 316)

TABLE VIII

COMPARISON OF MATCHING RATES (%) UNDER DIFFERENT RANKS

WITH PERSON RE-IDENTIFICATION APPROACHES ON THE

VIPeR DATASET (P = 100)

on both settings of the VIPeR dataset, which illustrates the
effectiveness of the proposed approach. SIR-CIR [56] exploits
the connection between single-image representation (SIR) and
cross-image representation (CIR) by using a joint learning
framework on CNN. Instead of studying both SIR and CIR,
the proposed DLML mainly focuses on the CIR task to learn
distance metrics for image pairs, exploiting multiple deep
localized metrics, and obtains comparable results on the VIPeR
dataset.

C. Scene Recognition

In this subsection, we evaluated the proposed DLML
approach on the MIT Indoor-67 dataset [62], which is a
popular indoor scene recognition dataset. The MIT Indoor-67
dataset consists of 16520 images of 67 indoor scenes,
which has small inter-class variations and is challenging
for classification. Fig 9 shows some examples from the
MIT Indoor-67 dataset. We followed the standard evaluation
protocol [62] by approximately using 80 images per class
for training and 20 images for testing. We randomly selected
equal number of positive pairs and negative pairs from the
training set for each class to train the metric networks.

1) Feature Representation: We utilized the commonly used
PlaceNet [63] feature as the representation of each indoor
scene image. PlaceNet is a convolutional neural network
which trains on the Places dataset with over 7 million
pictures. Through the pre-trained network, we can obtain a
4096-dimensional feature for each image. Also, we utilized
WPCA to reduce the feature dimension into 800 to remove
the redundancy. We fixed K = 8 in this experiment, and set
the structure of Auto-Encoders and fully connection networks
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Fig. 9. Examples of “computer room”, “livingroom” and “video store” from
the MIT Indoor-67 dataset. Images from each row represent the same category,
and the dataset suffers from small inter-class variations.

TABLE IX

COMPASION OF RECOGNITION RATE (%) WITH CONVENTIONAL SCENE

RECOGNITION METHODS ON THE MIT INDOOR-67 DATASET

as [800→700→600→700→800] and [800→700→600],
respectively.

2) Comparison With Existing Methods: We first com-
pared our DLML with conventional scene recognition meth-
ods. The compared approaches mainly include regions of
interest (ROI) [62], max-margin multiple-instance dictionary
learning (MMDL) [64], discriminative and shareable feature
learning (DSFL) [65], improved Fisher vectors (IFV) [66]
and important spatial pooling regions (ISPR) [67]. Table IX
shows the experimental results of the proposed DLML and
conventional scene recognition methods on the MIT Indoor-
67 dataset. Our DLML outperforms these methods by at
least 15% on accuracy. The conventional methods fail to
extract effective features as deep learning is not applied to
exploit the semantic information. The proposed DLML utilize
the PlaceNet feature and learn deep localized metrics, which
leads to strong discriminative power.

Then, we compared the state-of-the-art CNN approaches on
the MIT Indoor-67 dataset, and Table X illustrates the exper-
imental results. We observe that the proposed DLML method
largely improves the performance of the PlaceNet feature
by over 15%, and achieves the state-of-the-art performance
on the MIT Indoor-67 dataset. As the inter-class variations
are relatively small in this dataset, there are a number of
local regions where subjects from different class are similar
in representation. The proposed DLML approach locates the

TABLE X

COMPARISON OF RECOGNITION RATE (%) WITH THE
CNN METHODS ON THE MIT INDOOR-67 DATASET

Fig. 10. Accuracy of DLML under different number of subspaces (from
0 to 5) on LFW, YTF, VIPeR (P = 316, Rank-20) and MIT Indoor-67.

ambiguous local regions and enlarges the distances of negative
pairs, which effectively relieve the problem of small inter-
class distances and improve the distinctiveness of the learned
feature.

D. Number of Subspaces

In our DLML, we learned K + 1 deep metrics in total,
where K of them were local metrics and the other was a
holistic metric. The localized metric learning will degenerate
to single metric learning for K = 0, and become a combination
of two holistic metrics for K = 1. In order to illustrate
the effectiveness of localized metric learning, we tested the
number of subspaces on all the databases including LFW,
YTF, VIPeR and MIT Indoor-67, and Fig. 10 illustrates the
performance of the proposed DLML under different number
of subspaces. We observe that the accuracy increases at first
with larger number of subspaces for all the datasets, and
then becomes still when K is relatively large. The reason is
that more localized information is exploited with larger K ,
yet it will be saturated when learning a large number of
subspaces. In the training procedure of KAEs, we only train
each autoencoder with the features belonging to it. When K
is too large, all the features would be quantized to a few
autoencoders, where the rest of autoencoders have no samples
for training. In this situation, the subspaces is saturated and
obtains the similar performance with the small number of K .
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Moreover, the VIPeR and MIT Indoor-67 datasets suffer from
more variations, so that the optimal K is larger.

E. Analysis

The above experiments suggest the following four key
observations:

1) The proposed DLML learns discriminative metrics on
multiple local subspaces, which obtains more fine-
grained distance metrics over the input space. In many
visual analysis tasks, the input set may suffer from
small inter-class or large intra-class distances in local
regions, and the localized metric learning emphasizes
the confusing subspaces to improve the distinctiveness
of the feature.

2) The proposed DLML applies deep neural networks to
learn complicated distance metrics from the input set.
Compared with conventional metric learning approaches
which learns a linear Mahalanobis metric, our DLML
presents stronger discriminative power by learning hier-
archical nonlinear transformations.

3) The performance is improved with the increase of the
number of the learned subspaces at first, and it will
be saturated if the number is too large. Generally,
more complicated datasets require a larger K for finely
description.

4) Combining different feature descriptors lead to better
recognition performance, as the combination provides
more complete information of the input images.

V. CONCLUSION

In this paper, we have presented a deep localized metric
learning (DLML) approach for visual recognition. Our DLML
learns K local subspaces and one holistic subspace through the
K-Auto-Encoders (KAEs) based clustering, and obtains deep
localized metrics with deep neural networks. The proposed
DLML achieves better or very competitive performance on
three different visual analysis tasks including face recognition,
person re-identification and scene recognition, which shows its
effectiveness and wide applicability.
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